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The paper considers the task of automatic discourse parsing of texts in Russian. Dis-
course parsing is a well-known approach to capturing text semantics across boundaries of
single sentences. Discourse annotation was found to be useful for various tasks including
summarization, sentiment analysis, question-answering. Recently, the release of manually
annotated Ru-RSTreebank corpus unlocked the possibility of leveraging supervised machine
learning techniques for creating such parsers for Russian language. The corpus provides the
discourse annotation in a widely adopted formalisation — Rhetorical Structure Theory. In
this work, we develop feature sets for rhetorical relation classification in Russian-language
texts, investigate importance of various types of features, and report results of the first ex-
perimental evaluation of machine learning models trained on Ru-RSTreebank corpus. We
consider various machine learning methods including gradient boosting, neural network, and
ensembling of several models by soft voting.
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1 Introduction

There are many natural language processing tasks that require the analysis of text beyond
the boundaries of single sentences. Recently, researches have started to approach this prob-
lem by leveraging discourse parsing, which made it a very prominent research topic. One
of the most widely adopted discourse models of text is Rhetorical Structure Theory (RST),
developed by W. Mann and S. Thompson [I]. RST represents a text as a tree of discourse
(rhetorical) relations (“Cause”, “Condition”, “Elaboration”, “Concession”, “Sequence”, “Con-
trast”, etc.) between text segments — discourse units (DUs). These units can play various
roles inside a relation: nuclei contain more important information, while satellites give sup-
plementary information. The leaves of the tree are so called elementary discourse units
(EDUs), usually clauses. Discourse trees in RST integrate both shallow and deep discourse
structure. Discourse units on different levels are combined by the same set of relations. The
well-known applications of automatic discourse parsing include the systems for summariza-
tion [2], sentiment analysis [3], question-answering [4], natural language generation [5], and
dialog parsing [0].

This work is devoted to the problem of developing a system for rhetorical parsing of Rus-
sian texts. Recently, the release of manually annotated Ru-RSTreebank corpus [7] unlocked
the possibility to use machine learning techniques for this task. In particular, we consider
the tasks of classification of discourse relations between DUs into rhetorical types, as well as
determining the nuclearity of DUs in a relation.

The contributions of this paper are the following:

e We investigate importance of various types of features for discourse relation classifica-
tion in Russian-language texts and develop a feature set for this task.

e We report the results of the first experimental evaluation of machine learning models
trained on Ru-RSTreebank corpus.

e We publish the models and the code for evaluation.

The rest of the paper is structured as follows: Section 2 presents the background and
related work on discourse parsing. Section 3 briefly describes the manually annotated corpus
of rhetorical structures Ru-RSTreebank. Section 4 examines features, classification models,
and feature selection procedure. Section 5 describes the experimental evaluation of the
developed methods, results of feature importance investigation, and results of error analysis.
Section 6 concludes the paper and outlines the future work.

2 Background and Related Work

One of the early attempts at data-driven discourse parsing [8] rely to a large extent on
syntactic features. The authors leverage lexicalized syntactic trees, probabilistic models,
and a bottom-up parser for segmenting and building sentence-level discourse trees. In [9],
syntactic features and POS tags are used as features in a shift-reduce discourse parser driven
by an averaged perceptron. In HILDA parser [10] the feature set is extended with information
about discourse markers, punctuation, and word-level n-grams. In some other works, it is
suggested using also syntax and discourse production rules [I1], 12], POS tags of the head
node and the attachment node, as well as the dominance relationship between DUs, and the
distance of each unit to their nearest common ancestor [I3]. Some recent studies propose to
abandon using any form of syntactic subtrees as features and leverage hidden outputs of a
neural syntax parser as implicit features instead |14 [15].



Besides various syntactic features, one can use lexical features, semantic similarities of
verbs and nouns [I2] in different DUs, tokens and POS tags at the beginning and end of
cach DU and whether the both of them are in the same sentence [I6], bag of words along
with the appearing of any possible word pair from both DUs [I7]. In [I8], neural tensor
network with interactive attention was applied to capture the most important word pairs.
Authors use them as additional features to word embeddings. In [19], researchers suggest
to use some entity-related features to extract implicit discourse relations between sentences
of one paragraph, such as whether entities in the current DU were used in previous sen-
tences or not. Authors claim it could be useful for detection of “Expansion”type relations
(e.g., “Restatement”), or occurrence of a topic indication, which is frequent for “Comparison”
(e.g., “Contrast”, “Concession”) and “Temporal” relations. Other representative semantic
properties were discovered in [20] for three relation types from Penn Discourse Treebank:
“Comparison”; “Contingency” (e.g., “Cause”, “Condition”), “Expansion”. Authors find that
“Comparison” relations are usually expressed by negation in one of the two arguments; “Con-
tingency” relation can be discovered if one of the DUs is a subjective judgement, e.g., it can
be manifested in the lexical choice of the main verb. “Expansion” relations, being general-
specific, can be encoded with pronouns tagging and named entity recognition in a Narrowing
Entity Continuity feature by indefinite pronouns detection in DU1 and named entities ex-
traction in DU2 and in a Parallel Entity Continuity feature by comparison of type of named
entities in both DUs and detecting any continuity form in the predicate.

Recently, deep learning models that use low-level features were adopted for discourse
parsing. In [21], authors propose a transition-based discourse parser that makes use of mem-
ory networks to take discourse cohesion into account and benefit discourse parsing, including
cases of long span scenarios. Experiments were based on RST Discourse Treebank for En-
glishfT] Several discourse parsing models were created for Chinese. In [22], a framework based
on recursive neural network is proposed, it jointly models the subtasks of EDU segmentation,
tree structure construction, center labeling, and sense labeling. In [18], researchers use word
pairs from two discourse arguments to model pair specific clues, and integrate them as inter-
active attention into argument representations produced by the bidirectional long short-term
memory network (Bi-LSTM). Pair patterns improve recognition of discourse relations. In
[23], a text matching network is presented. It encodes the discourse units and the paragraphs
by combining Bi-LSTM and CNN to capture both global dependency information and local
n-gram information.

In this paper, we primarily rely on feature-engineering approach rather than on deep
models for several reasons. The purpose of this work is to set a baseline for the discourse
parsing of texts in Russian and investigate importance of various language factors rather to
push the performance of the parser to the limit. Although deep models can perform better,
they are not transparent enough for feature investigation. We also note that we are still
lacking of training data for leveraging deep models. Commonly, these models have a lot of
parameters (starting from hundreds of thousands) and tend to overfit on small datasets.

3 Annotated corpus

This study is based on Ru—RSTreebankE] — first open discourse corpus for Russian [7, 24].
We use an updated version of Ru-RSTreebank that is currently freely available on demand.
Currently, it consists of 179 texts, including news, news analytics, popular science, and
research articles about linguistics and computer science (203,287 tokens in total). The set

"https://catalog.ldc.upenn.edu/LDC2002T07
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Figure 1: Visualization in rstWeb of an annotated fragment of Ru-RSTreebank

of rhetorical relations was customized to make it more suitable for Russian. The corpus
was annotated with an open-source tool called rstWebH As to inter-annotator agreement,
Krippendorff’s unitized alpha is 81%.

The corpus contains the following types of annotations: segmentation of EDUs (mostly
clauses), nuclearity of discourse units, types of discourse relations, rhetorical tree structures.
In addition to ordinary multi-nuclear relation types, there is a relation type “Same-unit”,
which is used for annotations of cases when one discourse unit is interrupted by another one.
A rhetorical tree fragment example is presented in Figure [T}

4 Features and Models for Discourse Parsing

In this work, we focus on two multiclass classification tasks. The objects for classification
are pairs of DUs, that are given in the corpus. The first task is classification of DU pairs
into 11 rhetorical labels. The second task is nuclearity relationship classification between
DUs; there are three types of nuclearity in RST: “Satellite-Nucleus” (SN), “Nucleus-Satellite”
(NS), “Nucleus-Nucleus” (NN).

4.1 Features

For both tasks, we consider combinations of various lexical, morphological, and semantic
features. As lexical features, we use the list of marker phrases (or discourse connectives),
nearly 450 items. It was manually composed on the basis of three sources: expressions

3https://corpling.uis.georgetown.edu/rstweb/info/
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extracted by experts from the annotated texts, the conjunctions used in complex sentences
in Russian described in RusGramF_f] and the list of functional MW Us suggested in the Russian
National Corpus’}

The set of features contains various numerical features:

e Number of words.

e Average word length.

e Number of completely uppercase words.

e Number of words starting with an uppercase letter.

e Number of various morphological features. For instance, verbs have person and num-

ber.
e Part of speech tags for the first and the last word pairs of each DU.

e Features indicating the similarity between morphological features vectors of both DUs
using various similarity measures namely Cosine, Hamming, Canberra, similarity mea-
sure for binarized vectors.

e Number of occurrences of stop words.

e Number of occurrences of each marker phrase.

e Occurence of each cue phrase at the beginning and the end of each DU.
e TF-IDF [25] of each DU.

e Cosine similarity between TF-IDFs.

e Jaccard index between lemmatized DUs.

e BLEU similarity measure.

e Averaged word embeddings of each DU. Embedding models were trained using word2vec
[26].

e Sample of non-topll classes examples along with the features described above were
supplied to train a regressor, which predicts the probability of appearance of a mononu-
clear relation between DUs. This prediction is also used as a feature in the relation
labeling.

4.2 Classification and Feature Selection Methods

We compared the effectiveness of various widely used supervised learning algorithms, namely,
logistic regression, feedforward neural network (NN), support vector machine (SVM) with
various kernels [27], and gradient boosting on decision trees (GBT) implemented in Light-
GBM [28] and CatBoost [29] packages. Feedforward neural network is a 2-layer perceptron
regularized with dropout. The first layer activation function is ReLLU. The outputs of the
first layer are passed through the batch normalization. The activation on the output layer
is softmax. As data imbalance highly affect the performance of neural network model, the

4http://rusgram.ru
Shttp://ruscorpora.ru/obgrams.html
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Figure 2: Distribution of rhetorical relation classes in the result dataset
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SMOTE technique [30] is incorporated to oversample all classes but the majority class. We
also experimented with ensembles by combining several models with soft voting.

The number of features in the original feature space is 3,273. Since only some features
are informative, we perform feature selection: in some experiments we pick a strong subset of
features selected by Ll-regularized logistic regression model. A parameter of regularization
is C. The higher C means the lower regularization strength. The best C for feature selector
was found using grid search on 5-fold cross validation.

We also build ensembles of classifiers using soft voting. During the preliminary experi-
ments, we found that ensembles of gradient boosting models with feature selection and linear
SVM classifiers achieve the best performance.

5 Experiments

5.1 Dataset and Evaluation Procedure

The distribution of the classes in the original Ru-RSTreebank corpus is skewed. For experi-
ments, we excluded “Elaboration” and “Joint” relations, since they are not very informative,
although they are the most common. We also excluded “Same-unit” since it is has an utility
function. Finally, we took the first 11 most representative classes, for which the dataset
contains at least 320 examples. Therefore, we selected 8 mononuclear relations (these re-
lations are marked with postfix “ 1”) and 3 multinuclear relations (they are marked with
postfix “ m”). The result dataset for experimental evaluation contains 6,790 examples, the
distribution of the classes is depicted in Figure

Prior to feature extraction, the following text preprocessing steps were taken: tokeniza-



Table 1: Results of rhetorical relation classification models, %

Classifier Macro F} Micro Fj
mean | std | mean | std
NN 49.43 | 1.52 | 55.78 | 1.16
Logistic Regression 50.81 | 1.06 | 53.81 | 1.84
LGBM 51.39 | 2.18 | 59.91 | 1.32
Linear SVM 51.63 | 1.95 | 56.61 | 1.54
L, Feature selection + LGBM 51.64 | 2.22 | 60.29 | 1.74
CatBoost 53.32 | 0.96 | 60.71 | 0.81
L, Feature selection + CatBoost 53.45 | 2.19 | 61.09 | 1.96
voting((L, Feature selection + LGBM), Linear SVM) 54.67 | 1.80 | 62.39 | 1.51
voting((L, Feature selection + CatBoost), Linear SVM) 54.67 | 0.38 | 62.32 | 0.41

tion, lemmatization, part-of-speech tagging, and morphological analysis using MyStem [31].
The pipeline was implemented via IsaNLPE] Python library.

For evaluation, we used the standard metrics: precision, recall, and F;. Macro-averages
were employed as our main measurements, and accuracy was omitted, since the distributions
of classes are unbalanced. We perform all our experiments using 5-fold cross validation with
stratified randomized split of the dataset into 90% for training and 10% for testing.

A randomized grid search algorithm was used to find the optimum logistic regression
and SVM parameters: C and type of penalty (L1, L2), and neural network parameters:
number of units for each layer, activation function for each layer, dropout rate. Randomized
grid search was used for selecting the best hyperparameters for gradient boosting models:
number of trees, number of leaves, learning rate, feature sampling ratio, and regularization
coefficients. For selection of optimal number of iterations in a CatBoost model, we used its
built-in overfitting detector.

After hyperparameter tuning, we get the following best parameters. Logistic regression:
inverse regularization strength: 0.001 and L2 penalty. SVM: inverse regularization strength:
0.0001 and L2 penalty, kernel: linear. Light GBM: number of leaves: 36, number of iterations:
1,000, bagging fraction: 0.9, learning rate: 0.1. CatBoost: number of iterations: 2,000,
learning rate: 0.1. NN: size of hidden layer: 100, dropout: 0.5, optimization algorithm:
Adam, learning rate: 0.01, batch size: 128, number of epochs: 7.

5.2 Main Results

Table [1] summarizes the results of experiments with models for rhetorical relation classifica-
tion. The results show that gradient boosting models outperform other models. Ensemble
of CatBoost model with selected features and a linear SVM model owns the best score.

We evaluated the importance of features related to the word order in the document.
There are two types of discourse markers in the feature set: positional, i.e. whether a cue is
found at the beginning or at the end of DUs and quantitative, i.e. a number of a cue in each
DU. In Table 2] we see a performance drop when removing positional features. At the same
time, we can observe that quantitative features do not significantly affect the F} score.

The results for distinguishing “Satellite-Nucleus”, “Nucleus-Satellite”, and “Nucleus-Nucleus’
types of relations are presented in Table [3] We used the full set of features described in sub-
section 4.1} The experiment shows that the gradient boosting models strongly outperform
feedforward neural network, SVM and logistic regression classifiers.

)

Shttps://github.com/IINemo/isanlp
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Table 2: Fy, % for rhetorical relation classification task with different feature sets

Macro F}
Feature set Logistic Linear SVM | CatBoost
Regression
All features 51.5 50.6 52.4
w/o quantitative features -0.3 +0.1 -0.1
w/o positional features -4.0 -4.0 -2.8

Table 3: F for the nuclearity recognition models, %

. Macro Fj Micro F}
Classifier mean | std | mean | std
Linear SVM 63.01 | 0.58 | 64.20 | 0.52
NN 63.32 | 0.88 | 64.59 | 0.75
Logistic Regression 63.66 | 0.37 | 65.02 | 0.26
L1 Feature selection + LGBM 67.82 | 0.86 | 69.17 | 0.73
CatBoost 68.03 | 0.45 | 69.37 | 0.36
LGBM 68.81 | 0.77 | 70.17 | 0.67
L1 Feature selection + CatBoost 68.82 | 0.84 | 70.31 | 0.76

From the whole set of features (3,624 features), CatBoost model for rhetorical type rela-
tion classification selected 2,014 as important features. Analysis of this features is presented
in Table @l We can see that the most important features for this model are related to
discourse markers. Table 4| also shows the performance drop when removing features from
this model. As we can see, after removing the information about 1,887 features related to
discourse markers, this model loses 2.49% of macro F.

5.3 Error Analysis

The classification report of the best performed model using a variety of measures is presented
in Table | In Figure [3, we also provide the confusion matrix generated by this model.
Asymmetric relations labeling has relatively better performance, we achieved 74.36% F}
score for “Attribution” relation.

The worst performance, under 50% F; score, was obtained with 4 classes that have
least number of training instances: “Comparison” (320 samples), “Evidence” (529 samples),
“Evaluation” (356 samples), and “Background” (328 samples). For example, “Evidence”,
“Evaluation”, and “Background” are often recognized as “Cause”, the most represented class
(1235 samples). The model has a very low recall score on “Background” relation, often
labeling it as “Preparation”. Macro averaged Fj score for the classification on the top 7
relations is 72.34+1.37%.

Errors with relation labeling partly occur when there is semantic similarity between
true type and predicted type, such as in pairs “Preparation”™“Background”, “Comparison’-
“Contrast”, “Cause”™‘Evidence”, “Purpose”“Cause”, “Preparation”‘Attribution”, “Preparation”-
“Sequence”. In other cases, such as “Cause’™ ‘Preparation” or “Preparation”“Attribution”, er-
rors can be caused by stylistic difference in news texts/scientific texts that are included in cor-
pus. There are also cases when relation types are not semantically close to each other, these
ones need more thorough investigation. For example, if “Cause” is predicted instead of “Con-
trast”, the error can be explained by occurrences of possible cause markers in nucleus or satel-
lite, and corresponding punctuation marks: ‘(B _ochoBe  dpaseosornueckoro coueranus
JIe’KaT JIBe 3aMMCTBOBAHHBIE M3 TYDPEIKOrO si3bIKa JIeKCeMbl : | [a cama mpnoma siBjsiercs



Table 4: Important features selected by CatBoost model per feature type

Type

Features

Number

% in selected

Performance

drop, %

Lexical

4 elements of TF-IDF vectors for the
first DU; 4 elements of TF-IDF vec-
tors for the second DU;

0.4

0.11

Morpho-
syntactic

Combinations of punctuation, nouns,
verbs, adverbs, conjunctions, adjec-
tives, prepositions, pronouns, nu-
merals, particles at the beginning
of a first DU; Combinations of
punctuation, verbs, adverbs, nouns,
pronouns, adjectives, conjunctions,
prepositions, particles, numerals at
the end of a first DU; Number of
nouns in instrument case, pronouns,
adverbs in a first DU;

Various combinations of verbs, pro-
nouns, nouns, adverbs, conjunctions,
punctuation, particles at the begin-
ning of a second DU; Various combi-
nations of punctuation, nouns, verbs,
pronouns, adverbs, adjectives, prepo-
sitions, conjunctions, particles at the
end of a second DU; Number of oc-
currences of conjunctions, adverbs,
adjectives, pronouns, adpositions in
a second DU; Number of passive
verbs, gerunds and infinitives in a
second DU;

Correlation between morphological
features vectors of DUs.

119

5.9

0.45

Textual

Number of occurrences of 355 mark-
ers in a first DU (18%)

Number of occurrences of 331 mark-
ers in a second DU (17%)
Occurrences of 298 markers at the
beginning of X (16%)

Occurrences of 326 markers at the
end of X (17%)

Occurrences of 335 markers at the
beginning of Y (19%)

Occurrences of 242 markers at the
end of Y (13%)

1887

93.69

2.49




Table 5: Relation labeling performance for each class, %

Class Precision | Recall | F-score
attribution 73.11 75.77 74.36
purpose 71.87 73.71 72.70
condition 73.60 65.75 69.36
preparation 57.82 81.09 67.49
cause 51.73 69.96 59.46
contrast 68.43 56.69 56.69
sequence 54.46 54.55 54.22
evidence 44.75 34.53 38.95
comparison 50.43 31.25 38.49
evaluation 31.89 17.46 22.56
background 24.09 5.15 8.41

Confusion matrix VotingClassifier

atribution_r ==. 08
QUTpOse_T -=..
condition_r ... 06
preparation_r .=-.
L CALISE [ -..
[ix]
E Contrast_m -=.. 04
= sequence_m HE
evidence_r
COMPEriS0n_m 02
evaluation_r
background _r an
U B H| EI EI o EI i
[ B = Mmoo D E o =
SESEEE 53 E 3
2 3 5 5 cE L 2§ = B
= 8B ¢ B Z T a & E
= =
=]

Fredicted label

Figure 3: Confusion matrix for the best model

TOYHO} KaJIbKOil Typenkoro Beipazkenns.|” ('[Two lexemes borrowed from Turkish are at the
heart of the phraseological unit : | [and the idiom itself is a calque of the Turkish expres-
sion.|”), ‘|Teker mepeBosia Ipu 9TOM He SBJIAETCA KOMMEH WM MOJ00UeM UCXOHOIO TEKCTA. |
[On nopoxjaercss  IyTeM BOIUIOIIEHHs HA A3BIKE MEPEBOJIa YKA3AHHONW KOHIIENTYaIbHOI
crpykTypsL.|” (’[The translated text is not a full copy or a semblance of the original text.| [It
is created by emphasizing a specified conceptual structure in the language of translation.|’).

6 Conclusion and Future Work

We investigated the performance of different algorithms and features for discourse relations
labeling and nuclearity type classification. We found that textual, morpho-syntactic, and
lexical features are equally important in the relation labeling; both positional and quantita-
tive textual features improve the quality of classification. Source code of the experiments is

10



available onlind’l

In our future work we are going to implement the complete pipeline for discourse parsing
of Russian texts including segmentation and discourse tree construction. We also looking
forward to employ state-of-the art deep learning techniques and pretrained language models
for relation classification.
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