

Productivity, learning, product innovations and competitive pressure in Russian manufacturing firms

within a project "Factor affecting productivity in Russian firms in basic non-resource industries" together with Yu. Simachev, M. Kuzyk, S. Schuvalov, N. Zudin, M. Yurevich

Anna A. Fedyunina

PhD, Leading Researcher Centre for Industrial Policy Studies afedyunina@hse.ru

> ASEEES San Francisco, 2019

The World's Productivity 2017

Productivity Per Person Per Hour

Productivity Per Person Per Hour (Selected 35 Countries)

Article and Sources

https://howmuch.net/articles/worlds-most-productive-countries International Monetary Fund; Organisation for Economic Co-operation and Development

What are main features of foreign programs targeting higher productivity?

Based on: Kazakhstan 2011, Brazil 2016, India 2011, UK 2015, Finland 2016, Malaysia 1962, Korea 1978, USA 1980:

- long-term planning (without short-term expectations)
- wide coverage of participating firms (no exclusion)
- targeting not only particular sectors, but the economy as a whole
- combination of technological and organizational innovation
- usage of existing infrastructure, development institutions
- not only government organizations are included
- combination of different forms of support
- emphasis on the spread of advanced competencies, development of human capital

What's about Russian program aimed at higher productivity?

Nacional'nyj proekt «Proizvoditel'nost' truda i podderzhka zanyatosti»

- Approved in December 2018 according to Presidential Executive Order On National Goals and Strategic Objectives issued May 7, 2018
- Currently is under review and amendments
- Main features of the program:
 - targets mainly large and medium-sized enterprises in basic non-resource sectors of the economy (agriculture, manufacturing, retail, construction, transportation)
 - chooses organizational innovations as a main instrument (among technological, product and organizational innovations)
 - has no connections with programs aimed at export potential and human capital development
 - doesn't assume joint measures together with innovative infrastructure techno parks, engineering centres and so on

- Export affects productivity through "learning by doing" and "learning by exporting" effects
 - Learning by doing and Self-selection into exporting: Bernard and Jensen 1995, 1999, Melitz, 2003, Bernard and Jensen 2004; Secchi et.al. 2016; for Russia: Golikova et.al., 2012; Kadochnikov, Fedyunina, 2013;
 - Learning by exporting: Clerides, Lach, and Tybout 1998; de Loecker 2007; Harrison and Rodriguez-Clare 2010, Alvarez and Lopez, 2005, Van Biesebroeck 2005, Greenaway and Keller 2007, Aw et al. 2011, Atkin et.al. 2017;

- Export affects productivity through "learning by doing" and "learning by exporting" effects
 - Learning by doing and Self-selection into exporting: Bernard and Jensen 1995, 1999, Melitz, 2003, Bernard and Jensen 2004; Secchi et.al. 2016; for Russia: Golikova et.al., 2012; Kadochnikov, Fedyunina, 2013;
 - Learning by exporting: Clerides, Lach, and Tybout 1998; de Loecker 2007; Harrison and Rodriguez-Clare 2010, Alvarez and Lopez, 2005, Van Biesebroeck 2005, Greenaway and Keller 2007, Aw et al. 2011, Atkin et.al. 2017;

Innovations affect productivity

- Endogenous growth models: Grossman and Helpman, 1990b; Romer 1986;
- R&D-Innovation-Productivity model proposed by Crepon et.al. 1998 and a large number of the followers; for Russia: Roud 2007, Trachuk, Linder 2017; *Fedyunina, Radosevic, 2019*
- Self-selection into innovation: Bustos 2011;

- Export affects productivity through "learning by doing" and "learning by exporting" effects
 - Learning by doing and Self-selection into exporting: Bernard and Jensen 1995, 1999, Melitz, 2003, Bernard and Jensen 2004; Secchi et.al. 2016; for Russia: Golikova et.al., 2012; Kadochnikov, Fedyunina, 2013;
 - Learning by exporting: Clerides, Lach, and Tybout 1998; de Loecker 2007; Harrison and Rodriguez-Clare 2010, Alvarez and Lopez, 2005, Van Biesebroeck 2005, Greenaway and Keller 2007, Aw et al. 2011, Atkin et.al. 2017;
- Innovations affect productivity
 - Endogenous growth models: Grossman and Helpman, 1990b; Romer 1986;
 - R&D-Innovation-Productivity model proposed by Crepon et.al. 1998 and a large number of the followers; for Russia: Roud 2007, Trachuk, Linder 2017; *Fedyunina, Radosevic, 2019*
 - Self-selection into innovation: Bustos 2011;
- Human capital and learning affects productivity
 - Endogenous growth models: Romer 1986; Lucas 1988
 - Resource based view of the firm: Barney 1991; (Barney and Wright 1998; Ployhart et al. 2009; Ployhart et al. 2011; Chang et.al 2016; for Russia: Fedyunina, Gerina, Averyanova, 2019

- Export affects productivity through "learning by doing" and "learning by exporting" effects
 - Learning by doing and Self-selection into exporting: Bernard and Jensen 1995, 1999, Melitz, 2003, Bernard and Jensen 2004; Secchi et.al. 2016; for Russia: Golikova et.al., 2012; Kadochnikov, Fedyunina, 2013;
 - Learning by exporting: Clerides, Lach, and Tybout 1998; de Loecker 2007; Harrison and Rodriguez-Clare 2010, Alvarez and Lopez, 2005, Van Biesebroeck 2005, Greenaway and Keller 2007, Aw et al. 2011, Atkin et.al. 2017;
- Innovations affect productivity
 - Endogenous growth models: Grossman and Helpman, 1990b; Romer 1986;
 - R&D-Innovation-Productivity model proposed by Crepon et.al. 1998 and a large number of the followers; for Russia: Roud 2007, Trachuk, Linder 2017;
 - Self-selection into innovation: Bustos 2011;
- Human capital and learning affects productivity
 - Endogenous growth models: Romer 1986; Lucas 1988
 - Resource based view of the firm: Barney 1991; (Barney and Wright 1998; Ployhart et al. 2009; Ployhart et al. 2011; Chang et.al 2016; for Russia: Fedyunina, Gerina, Averyanova, 2019
- (!) There is also a relationship between export, innovations and human capital and there is competition affecting all these factors

Theoretical model based on literature survey

Source: Authors' elaboration

Data

- Survey "Factors affecting productivity in Russian manufacturing industries" conducted by HSE in 2019
 - 4 basic non-resource industries: Agriculture, Manufacturing, Construction and Transport
 - 713 firms representative across sectors (but not across regions)
 - 4 sections in questionnaire:
 - (i) basic characteristics
 - (ii) employees and labor productivity
 - (iii) R&D, innovations and learning
 - (iv) government support

Self-estimated productivity and foreign competitors

- On average, only 46% of Russian firms have equivalent productivity according to their own estimation
- Lag in productivity is lower for young firms, investment active firms, firms introducing digital techs, and firm working on foreign markets

Change in productivity across sectors and basic indicators at the firm level 2013-2018

Descriptive stats for the firms that reported growth of productivity in 2013-2018:

	Agriculture	Manufacturing	Transport	Construction
Productivity per employee	41			
< 200K RUR				
200-400R RUR				
400-700K RUR				
700-1500K RUR				
>1500K RUR				
Revenue	1	1	1	
Number of employees	Û	1	Û	1
Salary of employees	1	1		1
R&D spending				
Export		介		
Investment	1	1		

R&D-led model doesn't work

Export-led growth in manufacturing

Investment-led model in agriculture, manufacturing and transport

>40% firms report growth >30% firms report growth

Export, productivity and competitiveness

Export and productivity in agriculture and manufacturing

Technological level and distance to leaders

In comparison with Russian firms

Export and productivity in construction and transportation

- Self-selection into exporting in manufacturing and agriculture
- Exporters report higher tech level in comparison with Russian firms, but not in comparison to foreign ones

In comparison with foreign firms

Catch up and new-to-market products

- Product, process and organizational innovations have complementary effect on the introduction of new-to-market products
- Process and organizational innovations and investments in fixed assets almost do not affect the introduction of new-to-market products

Employee training and competitiveness

Share of employees who received training during last 5 years and firms by productivity status

There are some evidence of increasing differences in the skills level among firms:

- Laggards in productivity do not hire new employees
- Leaders in productivity hire new employees and train existing staff

Share of employees who received training during last 5 years and change in the number of employees 2013-2018

Empirical equations

```
Productivity leader<sub>i</sub> = a_1 + b_{1,1}Training_i + b_{1,2}Innovation Intensity_i + b_{1,3}Export Intensity_i +
\delta_1 Competition_i + \gamma_1 X_i + g_1 Salary fund_i + g_2 Investments_i + g_3 Taxes_i + w_{1;1} Region_i + w_{2;1} Industry_i + \varepsilon
 Training_i = a_2 + b_{2:1}R\&D_i + b_{2:2}Innovation\ Intensity_i + b_{2:3}Export\ Intensity_i + b_{2:4}Productivity\ leader_i + b_{2:4}Productivity\ leader_
\delta_2 Competition_i + \gamma_2 X_i + g_4 Availability of labor_i + w_{2;1} Region_i + w_{2;2} Industry_i + \varepsilon
\begin{array}{l} Innovation_i = a_3 + b_{3;1}R\&D_i + b_{3;2}Training_i + b_{3;3}Export\ Intensity_i + b_{3;4}Productivity\ leader_i + \\ \delta_3Competition_i + \gamma_3X_i + g_5Innovation\ barriers_i + w_{3;1}Region_i + w_{3;2}Industry_i + \varepsilon \end{array}
 R\&D_i = a_4 + b_{4;1}Innovation_i + b_{4;2}Training_i + b_{4;3}Export\ Intensity_i + b_{4;4}Productivity\ leader_i + b_{4;4}Productivity
\delta_4 Competition_i + \gamma_4 X_i + g_6 Access to technologies_i + w_{4;1} Region_i + w_{4;2} Industry_i + \varepsilon
 \underline{Export_i} = a_5 + b_{5;1}Innovation_i + b_{5;2}Training_i + b_{5;3}Export\ Intensity_i + b_{5;4}Productivity\ leader_i + b
\delta_5 Competition_i + \gamma_5 X_i + g_7 Export\ barriers_i + w_{5:1} Region_i + w_{5:2} Industry_i + \varepsilon
```

Instruments

Control variables

Competition

Dependent variables

Productivity leader – a firm which is within top-20% of firms in industry according to productivity level

Export intensity – share of export in revenue >10%

R&D - share of R&D in revenue > 1%

Innovation intensity – number of innovations introduced during the last 5 years / introduction of technological innovations / introduction of non-technological innovations

Training – more than 10% of employees in a firm received training during the last 5 years

Methods

We employ 3SLS procedure

- System of equations is obviously endogenous
- Estimation technique should correct simultaneity bias
- Should be at least 2-step procedure with instrumental (strongly exogenous) variables for each equation
- dependent variables are explicitly taken to be endogenous to the system and are treated as correlated with the disturbances in the system's equations.
- Exogenous variables serve as instruments

Empirical results (1)

	Productivity leader	Export	R&D	Innovation	Training
Productivity leader	x	+***	n.s.	+*	n.s.
Export (>5% in revenue)	+***	X	+***	n.s.	_**
R&D (>10% employees)			X	n.s.	+***
Innovation	n.s.	n.s.	+**	X	n.s.
Training (>5% in revenue)	+*		+***	n.s.	X
Owner - State	+*	-*	n.s.	-*	n.s.
Owner - Foreign	+**	+***	-**	n.s.	+*
Size (5 categories)	_*	+**	+*	n.s.	n.s.
Age (5 categories)	n.s.	n.s.	n.s.	n.s.	+***
Medium competition with Russian firms	n.s.		n.s.	n.s.	n.s.
Medium competition with foreign firms	n.s.		+***	n.s.	_*
Strong competition with Russian firms	n.s.		+*	n.s.	n.s.
Strong competition with foreign firms	n.s.		+*	n.s.	n.s.
Industry FE (4 sectors)	Yes	Yes	Yes	Yes	Yes
Region FE (23 regions)	Yes	Yes	Yes	Yes	Yes

n.s. – not significant, * - significant at 10% level, ** - 5% level, *** - 1% level

Empirical results (2)

Empirical results (3)

- Productivity:
 - Training and exports increase productivity
- Training equation:
 - Doing R&D pushes firm to train its workers (sources for R&D?)
 - Smaller exporters are more involved into employee training (train to export more)
 - Productivity and innovations aren't significant for employee training
- R&D equation:
 - Training determines higher R&D intensity
- Innovation equation:
 - Higher productivity increases innovations (self-selection into innovations)
- Export equation:
 - Higher productivity increases export (self-selection into exports)
- Competition:
 - Competition increases R&D intensity
 - Competition decreases training (fear to loose highly educated staff?)
 - No effects on productivity and innovations

Outcomes and Policy recommendations

- There is a divergence in productivity levels not only between, but also within industries and regions
- Within-industry divergence is driven by lack of innovations and human capital shortage in lessdeveloped locations
- Government support is oriented towards relatively large firms, which are, in a nature, more productive themselves
- Organizational innovations and investments into fixed assets do not provide introduction of new products

Approved policy measures will further increase the divergence

- > Government support should be extended to small enterprises and other sectors
- ➤ Additional measures towards productivity convergence within industries should be introduced
- > Instruments should include measures promoting export activity and training programs
- ➤ Additional measures should be provided to generate positive linkages between innovation activity and productivity at the firm level