

20 - 26 JUNE 2021 PORTOROŽ SLOVENIA

Singularity preserving maps on matrix algebras

Valentin Promyslov Artem Maksaev

8TH EUROPEAN CONGRESS OF MATHEMATICS

> Lomonosov Moscow State University Moscow Center of Fundamental and Applied Mathematics

The talk is based on the joint work with

- A. Guterman (Lomonosov Moscow State University)
- A. Maksaev (Lomonosov Moscow State University)

I would like to express my gratitude to the Basis Foundation for covering the Congress registration fee.

Notation

- $M_n(\mathbb{F})$ the $n \times n$ matrix algebra over a field \mathbb{F} ;
- $GL_n(\mathbb{F})$ the set of invertible matrices;
- $\Omega_n(\mathbb{F})$ the set of singular matrices.

Classical result of Frobenius

Theorem (Frobenius, 1897)

If $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is linear and preserves the determinant, i. e.,

$$\det(T(A)) = \det(A)$$
 for all $A \in M_n(\mathbb{C})$,

then T is of the form

$$T(A) = PAQ \quad \forall A \in M_n(\mathbb{C}) \quad \text{or} \quad T(A) = PA^tQ \quad \forall A \in M_n(\mathbb{C}),$$

where $P, Q \in GL_n(\mathbb{C})$ with det(PQ) = 1.

Generalization for an arbitrary field

Let \mathcal{Y} be a subset of $M_n(\mathbb{F})$. We say that a transformation $T \colon \mathcal{Y} \to M_n(\mathbb{F})$ is of a standard form if there exist non-singular matrices P, Q such that

$$T(A) = PAQ \quad \forall A \in \mathcal{Y} \quad \text{or} \quad T(A) = PA^tQ \quad \forall A \in \mathcal{Y}.$$
 (1)

Theorem (Dieudonné, 1949)

Let $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ be a linear bijection. If T preserves the singularity, i. e.,

$$det(A) = 0 \Rightarrow det(T(A)) = 0$$

then T is of the standard form (1).

Generalization for an arbitrary field

Let \mathcal{Y} be a subset of $M_n(\mathbb{F})$. We say that a transformation $T \colon \mathcal{Y} \to M_n(\mathbb{F})$ is of a standard form if there exist non-singular matrices P, Q such that

$$T(A) = PAQ \quad \forall A \in \mathcal{Y} \quad \text{or} \quad T(A) = PA^tQ \quad \forall A \in \mathcal{Y}.$$
 (1)

Theorem (Dieudonné, 1949)

Let $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ be a linear bijection. If T preserves the singularity, i. e.,

$$\det(A) = 0 \Rightarrow \det(T(A)) = 0,$$

then T is of the standard form (1).

Removing the linearity

Theorem (Dolinar, Šemrl, 2002)

If $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is surjective and satisfies

$$\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \quad \text{for all } A, B \in M_n(\mathbb{C}) \text{ and all } \lambda \in \mathbb{C},$$
 (2)

then T is linear and hence is of the standard form (1) with det(PQ) = 1.

Generalization for an arbitrary field

Let \mathbb{F} be a field such that $|\mathbb{F}| > n$.

Theorem (Tan, Wang, 2003)

Let $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ be a transformation satisfying (2). Then T is of the standard form (1).

Theorem (Tan, Wang, 2003)

Let $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ be a surjective transformation satisfying

$$\det(A + \lambda_i B) = \det(T(A) + \lambda_i T(B))$$
 for all $A, B \in M_n$ and $i = 1, 2$

where $\lambda_i \in \mathbb{F} - \{0\}$ and $(\lambda_1/\lambda_2)^k \neq 1$ for $1 \leqslant k \leqslant n-2$. Then T is of the standard form (1).

Only one value of scalar

Theorem (Costara, 2019)

Suppose $|\mathbb{F}| \geqslant n^2 + 1$. Let $T_1, T_2 : M_n(\mathbb{F}) \to M_n(\mathbb{F})$ be maps, one of them being surjective, such that

$$\det(T_1(A) + T_2(B)) = \det(A + B) \quad (A, B \in M_n(\mathbb{F})).$$

Then there exist $A_0 \in M_n(\mathbb{F})$ and $P,Q \in M_n(\mathbb{F})$ satisfying $\det(PQ) = 1$ such that either

$$T_1(A) = P(A + A_0)Q$$
 and $T_2(A) = P(A - A_0)Q$ $\forall A \in M_n(\mathbb{F})$

or

$$T_1(A) = P(A + A_0)^t Q$$
 and $T_2(A) = P(A - A_0)^t Q$ $\forall A \in M_n(\mathbb{F}).$

Only one value of scalar

Theorem (Costara, 2019)

Let \mathbb{F} be a field with $|\mathbb{F}| \ge n^2 + 1$, and fix some nonzero element $\lambda_0 \in \mathbb{F}$. Let $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ be a surjective map such that

$$\det (T(A) + \lambda_0 T(B)) = \det (A + \lambda_0 B) \quad (A, B \in M_n(\mathbb{F}))$$

If $\lambda_0 = -1$, there exist $A_0 \in M_n(\mathbb{F})$ and $P, Q \in M_n(\mathbb{F})$ satisfying $\det(PQ) = 1$ such that

$$T(A) = P(A + A_0)Q$$
 $(A \in M_n(\mathbb{F}))$ or $T(A) = P(A + A_0)^tQ$ $(A \in M_n(\mathbb{F}))$

If $\lambda_0 \neq -1$, then T is of the standard form (1).

Main results

Let \mathbb{F} be an algebraically closed field.

Theorem (Guterman, Maksaev, Promyslov, 2021+)

Suppose $\mathcal{Y}=GL_n(\mathbb{F})$ or $\mathcal{Y}=M_n(\mathbb{F}),\,T\colon\mathcal{Y}\to M_n(\mathbb{F})$ is a map satisfying the following conditions:

• for all $A, B \in \mathcal{Y}$ and $\lambda \in \mathbb{F}$

$$\det(A + \lambda B) = 0 \quad \Rightarrow \quad \det(T(A) + \lambda T(B)) = 0 \tag{*}$$

• the image of T contains at least one non-singular matrix.

Then T is of the standard form (1).

Note that in the theorem above det(PQ) possibly differs from 1.

Main results

Let \mathbb{F} be an algebraically closed field.

Theorem (Guterman, Maksaev, Promyslov, 2021+)

Suppose $\mathcal{Y} = GL_n(\mathbb{F})$ or $\mathcal{Y} = M_n(\mathbb{F}), T \colon \mathcal{Y} \to M_n(\mathbb{F})$ is a map satisfying the following conditions:

• for all $A, B \in \mathcal{Y}$ and $\lambda \in \mathbb{F}$

$$\det(A + \lambda B) = 0 \quad \Rightarrow \quad \det(T(A) + \lambda T(B)) = 0 \tag{*}$$

• the image of T contains at least one non-singular matrix.

Then T is of the standard form (1).

Note that in the theorem above det(PQ) possibly differs from 1.

Identity matrix preservation

- It is enough to consider only such maps T, that T(I) = I.
- Indeed, if T satisfies (*), then for every $R, S \in GL_n(\mathbb{F})$ map T' such that $T'(A) = R \cdot T(A) \cdot S$ also satisfies (*).

Lemma

If T(I) = I then T preserves determinant, i.e. $\det A = \det(T(A)) \quad \forall A \in GL_n(\mathbb{F})$.

Identity matrix preservation

- It is enough to consider only such maps T, that T(I) = I.
- Indeed, if T satisfies (*), then for every $R, S \in GL_n(\mathbb{F})$ map T' such that $T'(A) = R \cdot T(A) \cdot S$ also satisfies (*).

Lemma

If T(I) = I then T preserves determinant, i.e. $\det A = \det(T(A)) \quad \forall A \in GL_n(\mathbb{F})$.

Identity matrix preservation

- It is enough to consider only such maps T, that T(I) = I.
- Indeed, if T satisfies (*), then for every $R, S \in GL_n(\mathbb{F})$ map T' such that $T'(A) = R \cdot T(A) \cdot S$ also satisfies (*).

Lemma

If T(I) = I then T preserves determinant, i.e. $\det A = \det(T(A)) \quad \forall A \in GL_n(\mathbb{F})$.

$$T:GL_n(\mathbb{F})\to M_n(\mathbb{F})$$

- The aim is to prove that:
 - $T(A+B) = T(A) + T(B) \quad \forall A, B \in GL_n(\mathbb{F})$ such that A+B is non-singular;
 - $T(\alpha A) = \alpha T(A) \quad \forall A \in GL_n(\mathbb{F}), \alpha \in \mathbb{F}^*.$
- Then $T \colon GL_n(\mathbb{F}) \to M_n(\mathbb{F})$ can be extended by linearity on $M_n(\mathbb{F})$ in such way that $T \colon M_n(\mathbb{F}) \to M_n(\mathbb{F})$ still preserves determinant.
- After that the desired result follows from the Frobenius theorem

$$T:GL_n(\mathbb{F})\to M_n(\mathbb{F})$$

- The aim is to prove that:
 - $T(A+B) = T(A) + T(B) \quad \forall A, B \in GL_n(\mathbb{F})$ such that A+B is non-singular;
 - $T(\alpha A) = \alpha T(A) \quad \forall A \in GL_n(\mathbb{F}), \alpha \in \mathbb{F}^*.$
- Then $T: GL_n(\mathbb{F}) \to M_n(\mathbb{F})$ can be extended by linearity on $M_n(\mathbb{F})$ in such way that $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ still preserves determinant.
- After that the desired result follows from the Frobenius theorem

$$T:GL_n(\mathbb{F})\to M_n(\mathbb{F})$$

- The aim is to prove that:
 - $T(A+B) = T(A) + T(B) \quad \forall A, B \in GL_n(\mathbb{F})$ such that A+B is non-singular;
 - $T(\alpha A) = \alpha T(A) \quad \forall A \in GL_n(\mathbb{F}), \alpha \in \mathbb{F}^*.$
- Then $T : GL_n(\mathbb{F}) \to M_n(\mathbb{F})$ can be extended by linearity on $M_n(\mathbb{F})$ in such way that $T : M_n(\mathbb{F}) \to M_n(\mathbb{F})$ still preserves determinant.
- After that the desired result follows from the Frobenius theorem.

Considering matrices as vectors

• To prove linearity we used ideas of Victor Tan and Fei Wang. Matrices $A \in M_n(\mathbb{F})$ can be considered as vectors $\nu_A \in \mathbb{F}^{n^2}$. Then to prove linearity it is enough to show that

$$u_{T(A)} = X \cdot \nu_A \quad \text{for some matrix } X \in M_{n^2}(\mathbb{F}).$$

But in our case instead of condition

$$\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \quad \text{for all } A, B \in M_n(\mathbb{F}) \text{ and all } \lambda \in \mathbb{F}$$
 (3)

we have

$$\det(A + \lambda B) = 0 \Rightarrow \det(T(A) + \lambda T(B)) = 0. \tag{*}$$

Therefore we need to modify the technique of Tan and Wang.

Considering matrices as vectors

• To prove linearity we used ideas of Victor Tan and Fei Wang. Matrices $A \in M_n(\mathbb{F})$ can be considered as vectors $\nu_A \in \mathbb{F}^{n^2}$. Then to prove linearity it is enough to show that

$$u_{T(A)} = X \cdot \nu_A \quad \text{for some matrix } X \in M_{n^2}(\mathbb{F}).$$

But in our case instead of condition

$$\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \quad \text{for all } A, B \in M_n(\mathbb{F}) \text{ and all } \lambda \in \mathbb{F}$$
 (3)

we have

$$\det(A + \lambda B) = 0 \Rightarrow \det(T(A) + \lambda T(B)) = 0.$$
 (*)

Therefore we need to modify the technique of Tan and Wang

Considering matrices as vectors

• To prove linearity we used ideas of Victor Tan and Fei Wang. Matrices $A \in M_n(\mathbb{F})$ can be considered as vectors $\nu_A \in \mathbb{F}^{n^2}$. Then to prove linearity it is enough to show that

$$u_{T(A)} = X \cdot \nu_A \quad \text{for some matrix } X \in M_{n^2}(\mathbb{F}).$$

But in our case instead of condition

$$\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \quad \text{for all } A, B \in M_n(\mathbb{F}) \text{ and all } \lambda \in \mathbb{F}$$
 (3)

we have

$$\det(A + \lambda B) = 0 \Rightarrow \det(T(A) + \lambda T(B)) = 0.$$
 (*)

• Therefore we need to modify the technique of Tan and Wang.

$$\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \quad \text{for all } A, B \in M_n(\mathbb{F}) \text{ and all } \lambda \in \mathbb{F}$$
 (3)

$$\det(A + \lambda B) = 0 \Rightarrow \det(T(A) + \lambda T(B)) = 0 \tag{*}$$

- Note that if the polynomial has n distinct roots and $\det(A) = \det(T(A))$, then (*) implies $\det(A + \lambda B) = \det(T(A) + \lambda T(B))$.
- Indeed, $\det(A + \lambda B)$ and $\det(T(A) + \lambda T(B))$ have the n common roots and coefficients of the term λ^0 are $\det(A) = \det(T(A))$.
- Thus it is enough to find for fixed A a matrix B such that $\det(A + \lambda B)$ has n distinct roots.
- This lead us to use some interesting properties of discriminant of polynomials.

$$\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \quad \text{for all } A, B \in M_n(\mathbb{F}) \text{ and all } \lambda \in \mathbb{F}$$
 (3)

$$\det(A + \lambda B) = 0 \Rightarrow \det(T(A) + \lambda T(B)) = 0 \tag{*}$$

- Note that if the polynomial has n distinct roots and $\det(A) = \det(T(A))$, then (*) implies $\det(A + \lambda B) = \det(T(A) + \lambda T(B))$.
- Indeed, $\det(A + \lambda B)$ and $\det(T(A) + \lambda T(B))$ have the n common roots and coefficients of the term λ^0 are $\det(A) = \det(T(A))$.
- Thus it is enough to find for fixed A a matrix B such that $\det(A + \lambda B)$ has n distinct roots.
- This lead us to use some interesting properties of discriminant of polynomials.

$$\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \quad \text{for all } A, B \in M_n(\mathbb{F}) \text{ and all } \lambda \in \mathbb{F}$$
 (3)

$$\det(A + \lambda B) = 0 \Rightarrow \det(T(A) + \lambda T(B)) = 0 \tag{*}$$

- Note that if the polynomial has n distinct roots and $\det(A) = \det(T(A))$, then (*) implies $\det(A + \lambda B) = \det(T(A) + \lambda T(B))$.
- Indeed, $\det(A + \lambda B)$ and $\det(T(A) + \lambda T(B))$ have the n common roots and coefficients of the term λ^0 are $\det(A) = \det(T(A))$.
- Thus it is enough to find for fixed A a matrix B such that $\det(A + \lambda B)$ has n distinct roots.
- This lead us to use some interesting properties of discriminant of polynomials.

$$\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \quad \text{for all } A, B \in M_n(\mathbb{F}) \text{ and all } \lambda \in \mathbb{F}$$
 (3)

$$\det(A + \lambda B) = 0 \Rightarrow \det(T(A) + \lambda T(B)) = 0 \tag{*}$$

- Note that if the polynomial has n distinct roots and $\det(A) = \det(T(A))$, then (*) implies $\det(A + \lambda B) = \det(T(A) + \lambda T(B))$.
- Indeed, $\det(A + \lambda B)$ and $\det(T(A) + \lambda T(B))$ have the n common roots and coefficients of the term λ^0 are $\det(A) = \det(T(A))$.
- Thus it is enough to find for fixed A a matrix B such that $\det(A + \lambda B)$ has n distinct roots.
- This lead us to use some interesting properties of discriminant of polynomials.

 $T \colon M_n(\mathbb{F}) \to M_n(\mathbb{F})$

For $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ the theorem follows from the following lemma, which can be interesting by itself:

Lemma

Let \mathbb{F} be a field $|\mathbb{F}| > n > 1$ and $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ denotes the map satisfying the following conditions:

- 1) for any matrices A, B the singularity of the matrix A+B implies singularity of T(A)+T(B);
- 2) $T|_{GL_n(\mathbb{F})} = \mathrm{id}|_{GL_n(\mathbb{F})}$.

Then T = id.

Thank you for your attention!

Bibliography

- G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Deutsch. Akad. Wiss. (1897), pp. 994–1015.
- D. J. Dieudonné, Sur une généralisation du groupe orthogonal á quatre variables, Arch. Math. 1 (1949), pp. 282–287.
- G. Dolinar, P. Šemrl, Determinant preserving maps on matrix algebras, Linear Algebra Appl. 348 (2002), pp. 189–192.
- V. Tan, F. Wang, On determinant preserver problems, Linear Algebra Appl., 369 (2003), pp. 311-317.
- C. Costara, Nonlinear determinant preserving maps on matrix algebras, Linear Algebra Appl., 583 (2019), pp. 165–170.
- C. de Seguins Pazzis, The singular linear preservers of non-singular matrices, Linear Algebra Appl., **433** (2010), pp. 483-490.