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Notation

F — an arbitrary field;
Mn(F) — the n× n matrix algebra over a field F;
GLn(F) — the set of invertible matrices;
Ωn(F) — the set of singular matrices.
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Introduction
Classical result of Frobenius

Theorem (Frobenius, 1897)

If T : Mn(C)→ Mn(C) is linear and preserves the determinant, i. e.,

det(T (A)) = det(A) for all A ∈Mn(C),

then T is of the form

T (A) = PAQ ∀A ∈Mn(C) or T (A) = PAtQ ∀A ∈Mn(C),

where P,Q ∈ GLn(C) with det(PQ) = 1.
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Introduction
Generalization for an arbitrary field

Let Y be a subset of Mn(F). We say that a transformation T : Y → Mn(F) is of a standard
form if there exist non-singular matrices P,Q such that

T (A) = PAQ ∀A ∈ Y or T (A) = PAtQ ∀A ∈ Y. (1)

Theorem (Dieudonné, 1949)

Let T : Mn(F)→ Mn(F) be a linear bijection. If T preserves the singularity, i. e.,

det(A) = 0⇒ det(T (A)) = 0,

then T is of the standard form (1).
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Introduction
Removing the linearity

Theorem (Dolinar, Šemrl, 2002)

If T : Mn(C)→ Mn(C) is surjective and satisfies

det(A+ λB) = det(T (A) + λT (B)) for all A,B ∈Mn(C) and all λ ∈ C, (2)

then T is linear and hence is of the standard form (1) with det(PQ) = 1.
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Introduction
Generalization for an arbitrary field

Let F be a field such that |F| > n.

Theorem (Tan, Wang, 2003)

Let T : Mn(F)→Mn(F) be a transformation satisfying (2). Then T is of the standard form
(1).

Theorem (Tan, Wang, 2003)

Let T : Mn(F)→Mn(F) be a surjective transformation satisfying

det (A+ λiB) = det (T (A) + λiT (B)) for all A,B ∈Mn and i = 1, 2

where λi ∈ F− {0} and (λ1/λ2)
k 6= 1 for 1 6 k 6 n− 2. Then T is of the standard form (1).
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Introduction
Only one value of scalar

Theorem (Costara, 2019)

Suppose |F| > n2 + 1. Let T1, T2 : Mn(F)→Mn(F) be maps, one of them being surjective,
such that

det(T1(A) + T2(B)) = det(A+B) (A,B ∈Mn(F)) .

Then there exist A0 ∈Mn(F) and P,Q ∈Mn(F) satisfying det(PQ) = 1 such that either

T1(A) = P (A+A0)Q and T2(A) = P (A−A0)Q ∀A ∈Mn(F)

or
T1(A) = P (A+A0)

tQ and T2(A) = P (A−A0)
tQ ∀A ∈Mn(F).

Promyslov, Maksaev (MSU) Singularity preserving maps on matrix algebras 8ECM 8/ 16



Introduction
Only one value of scalar

Theorem (Costara, 2019)

Let F be a field with |F| > n2 + 1, and fix some nonzero element λ0 ∈ F. Let
T : Mn(F)→Mn(F) be a surjective map such that

det (T (A) + λ0T (B)) = det (A+ λ0B) (A,B ∈Mn(F))

If λ0 = −1, there exist A0 ∈Mn(F) and P,Q ∈Mn(F) satisfying det(PQ) = 1 such that

T (A) = P (A+A0)Q (A ∈Mn(F)) or T (A) = P (A+A0)
tQ (A ∈Mn(F))

If λ0 6= −1, then T is of the standard form (1).
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Main results

Let F be an algebraically closed field.

Theorem (Guterman, Maksaev, Promyslov, 2021+)

Suppose Y = GLn(F) or Y = Mn(F), T : Y → Mn(F) is a map satisfying the following
conditions:

for all A,B ∈ Y and λ ∈ F

det(A+ λB) = 0 ⇒ det(T (A) + λT (B)) = 0 (∗)

the image of T contains at least one non-singular matrix.
Then T is of the standard form (1).

Note that in the theorem above det(PQ) possibly differs from 1.
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Sketch of proof
Identity matrix preservation

It is enough to consider only such maps T , that T (I) = I.

Indeed, if T satisfies (∗), then for every R,S ∈ GLn(F) map T ′ such that
T ′(A) = R · T (A) · S also satisfies (∗).

Lemma
If T (I) = I then T preserves determinant, i.e. detA = det(T (A)) ∀A ∈ GLn(F).
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Sketch of proof
T : GLn(F) → Mn(F)

The aim is to prove that:
T (A+B) = T (A) + T (B) ∀A,B ∈ GLn(F) such that A+B is non-singular;
T (αA) = αT (A) ∀A ∈ GLn(F), α ∈ F∗.

Then T : GLn(F)→ Mn(F) can be extended by linearity on Mn(F) in such way that
T : Mn(F)→ Mn(F) still preserves determinant.
After that the desired result follows from the Frobenius theorem.
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Sketch of proof
Considering matrices as vectors

To prove linearity we used ideas of Victor Tan and Fei Wang. Matrices A ∈Mn(F) can be
considered as vectors νA ∈ Fn2

. Then to prove linearity it is enough to show that

νT (A) = X · νA for some matrix X ∈Mn2(F).

But in our case instead of condition

det(A+ λB) = det(T (A) + λT (B)) for all A,B ∈Mn(F) and all λ ∈ F (3)

we have
det(A+ λB) = 0⇒ det(T (A) + λT (B)) = 0. (∗)

Therefore we need to modify the technique of Tan and Wang.
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Sketch of proof
Considering matrices as vectors

det(A+ λB) = det(T (A) + λT (B)) for all A,B ∈Mn(F) and all λ ∈ F (3)

det(A+ λB) = 0⇒ det(T (A) + λT (B)) = 0 (∗)

Note that if the polynomial has n distinct roots and det(A) = det(T (A)), then (∗) implies
det(A+ λB) = det(T (A) + λT (B)).
Indeed, det(A+ λB) and det(T (A) + λT (B)) have the n common roots and coefficients
of the term λ0 are det(A) = det(T (A)).

Thus it is enough to find for fixed A a matrix B such that det(A+ λB) has n distinct
roots.
This lead us to use some interesting properties of discriminant of polynomials.
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Sketch of proof
T : Mn(F) → Mn(F)

For T : Mn(F)→ Mn(F) the theorem follows from the following lemma, which can be
interesting by itself:

Lemma

Let F be a field |F| > n > 1 and T : Mn(F)→Mn(F) denotes the map satisfying the following
conditions:
1) for any matrices A,B the singularity of the matrix A+B implies singularity of

T (A) + T (B);
2) T |GLn(F) = id|GLn(F).

Then T = id.
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Thank you for your attention!
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