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Abstract. Trading systems are software platforms that support ex-
change of securities (e.g., company shares) between participants. In this
paper, we present a method to search for deviations in trading systems by
checking conformance between colored Petri nets and event logs. Colored
Petri nets (CPNs) are an extension of Petri nets, a formalism for mod-
eling of distributed systems, which allow to describe an expected causal
ordering between system activities and how data attributes of domain-
related objects (e.g., orders to trade) must be transformed. Event logs
consist of traces corresponding to runs of a real system. By comparing
CPNs and event logs, different types of deviations can be detected. Using
this method, we report the validation of a real-life trading system.
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1 Introduction

Trading systems are software platforms that support exchange of securities (e.g.,
company shares) between participants [9]. In these systems, orders are submitted
by users to indicate what securities they aim to buy or sell, how many stocks and
their price. Investors buy securities with promising returns, whereas companies
sell their shares to gain capital. These are some of the reasons why trading
systems are a vital element in global finances, requiring software processes in
these systems to guarantee their correctness. Among these processes, a crucial
one is the management of orders in order books. Order books are two-sided
priority lists where buy orders and sell orders that aim to trade the same security
are matched for trading. A trading system must handle and match orders in
these books according to its specification. Nonetheless, trading systems may be
prone to deviate from their specification due to software errors or malicious
users. This is why the validation of processes in trading systems, such as the
management of orders, is a task of utmost importance. In this light, domain
experts constantly seek for novel ways to detect system deviations, that is, to
localize precise differences between a real system and its specification [10].
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To detect deviations in trading systems, we have proposed the use of conformance
checking [2]. Conformance checking is a family of process mining techniques to
search for differences between formal models describing expected behavior of
processes and event logs that record real behavior of such processes [1]. Event
logs consist of traces related to runs of processes; a trace is an ordering sequence
of events, where each event indicates an activity executed. To model expected
behavior, we consider Petri nets — a well-known formalism for modeling and
analysis of distributed systems [13]. Petri nets allow to describe the control-flow
perspective of processes, that is, activities and their causal ordering (e.g., “a
trade between two orders is preceded by the submission of both orders”).

For trading systems, models should describe not only control-flow, but also
how data attributes of objects such as orders change upon the execution of ac-
tivites (e.g., “stocks of a sell order decrease by the number of stocks sold in a
trade”). We resort to colored Petri nets (CPNs) to combine both control-flow
and data perspectives [11]. CPNs are an extension of Petri nets where tokens pro-
gressing through the net carry data from some domains (referred to as “colors”).
CPNs allow us to describe how trading systems handle objects (represented by
tokens) and how their data attributes are transformed. This is an advantage over
data-aware Petri net models used in other conformance methods, which do not
directly relate data to objects [12]. In [3–5] we presented how CPNs, as well as
other Petri net extensions, allow to model different processes in trading systems.

We then developed conformance methods to replay traces of trading system
processes on CPNs modeling specifications. Replay consists in the execution
of a model according to the information in events of a trace [14]. Deviations
are found when a model cannot be executed as an event indicates. In [6] we
focused on deviations related to control-flow, and proposed a strategy to force
the execution of CPNs if deviations are found. Conversely, in [7] we use replay
to analyze object data attributes. Particularly, we check if data attributes of
objects are transformed by a real system in the same way that its model does.

In this paper, we present a conformance method which combines both ap-
proaches presented in [6, 7]. The following kinds of deviations in a system can
be detected when replaying a system’s trace on a CPN that models the system
specification: (i) control-flow deviation: the real system invoked an activity in-
volving certain objects, by skipping some activities that should have processed
before such objects; (ii) priority rule violation: an object was served before other
objects with higher priority; (iii) resource corruption: object attributes were not
transformed as the model specifies; (iv) non-proper termination: an object was
not fully processed by the real system. The method returns a file with precise
information about all deviations detected. We developed a prototypical imple-
mentation of the method, which we use to validate the management of orders in
a real-life trading system. An experiment with artificial data is also reported.

The rest of this paper is structured as follows. Sections 2 and 3 introduce
the CPN models and event logs used in our method. Section 4 presents the con-
formance method. Section 5 reports the prototype and experiments conducted.
Finally, Section 6 presents the conclusions.



2 Colored Petri Nets

Petri nets [13] are bipartite graphs consisting of two kinds of nodes: places and
transitions. Places (drawn as circles) represent resource buffers, conditions, or
virtual/physical locations. Transitions (drawn as boxes) account for system ac-
tivities. Places may store tokens, which represent control threads, resources,
etc. Transitions consume tokens from input places and produce them in out-
put places. In particular, we consider colored Petri nets (CPNs) where tokens
carry data belonging to some data domains (“colors”) [11]. As an example, Fig.
1 depicts a CPN modeling the specification of a trading system managing buy
orders and sell orders in one order book. Places p1 and p2 are sources for incom-
ing buy and sell orders; p3 and p4 are buffers for submitted orders; p5 and p6
model the buy/sell side of the order book, whereas p7 and p8 are sinks for orders
that traded or were canceled. Transitions t1 and t2 model submission of orders
by users; t3 and t4 model insertion of orders in order book sides. Then, trades
may occur between orders. Transition t5 (activity trade1) models a trade where
both orders are filled (all stocks were bought/sold); t6, t7 (activities trade2 and
trade3) model the cases where only one of the orders is filled, whereas the sec-
ond one is partially filled (returning to the order book). Transitions t8 and t9
represent cancellation of orders.
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Fig. 1: CPN model of a trading system operating one order book.



Let D be a finite set of data domains. A Cartesian product D1 × ... × Dn,
n ≥ 1, between a combination of data domains D1, ..., Dn from D is called a
color. Σ denotes the set of all possible colors defined over D. A token is a tuple
(d1, ..., dn) ∈ C such that C is a color in Σ. In the CPN of Fig. 1, we consider two
colors, OB = OB ×N×R+ ×N and OS = OS ×N×R+ ×N, where OB and OS are
sets of identifiers for buy orders and sell orders, N is the set of natural numbers
(including zero) and R+ is the set of positive real numbers. These colors are
used to represent buy/sell orders equipped with identifiers, arrival time, price
and stock quantity. For example, a token (b1, 1, 22.0, 5) represents an order with
identifier b1, submitted in time 1, to buy 5 stocks at price 22.0 per stock. Thus,
colors represent classes of objects, whereas tokens are object instances. Arcs are
labeled with expressions to specify how tokens are processed. We fix a language
of expressions L, where each expression is of the form (e1, ..., en) such that, for
each i ∈ {1, ..., n}, ei is either a constant from a domain in D, a variable typed
over an element in D, or a function whose domain and range are elements in D.

Definition 1 (Colored Petri net). Let D be a finite set of data domains, let Σ
be a set of colors defined over D, let L be a language of expressions, and let A be a
set of activity labels. A colored Petri net is a 6-tuple CP = (P, T, F, color, E , Λ),
where:

– P is a finite set of places, T is a finite set of transitions, s.t. P ∩ T = ∅, and
F ⊆ (P × T ) ∪ (T × P ) is a finite set of directed arcs;

– color : P → Σ is a place-coloring function, mapping each place to a color;
– E : F → L is an arc-labeling function, mapping each arc r to an expression in

L, such that color(E(r)) = color(p) where p is adjacent to r;
– Λ : T → A is an activity-labeling function, mapping each transition to an

element in A, ∀t, t′ ∈ T : t ̸= t′ ⇐⇒ Λ(t) ̸= Λ(t′).

We define restrictions that must hold for CPNs in order to model processes in
trading systems that manage different kinds of objects such as buy/sell orders
[6, 7]. We call conservative-workflow CPNs the models that comply such restric-
tions. In the following, for a transition t ∈ T in a CPN, •t = {p ∈ P | (p, t) ∈ F}
denotes the set of input places of t, and t• = {p ∈ P | (t, p) ∈ F} denotes the
set of output places of t.

Definition 2 (Conservative-Workflow Colored Petri Net). Let CP =
(P, T, F, color, E , Λ) be a CPN defined over a set of colors Σ. We say that CP
is a conservative-workflow CPN iff:

1. CP is a conservative colored Petri net where tokens do not disappear or du-
plicate. For every transition t ∈ T :

– ∀ p ∈ •t ∃! p′ ∈ t• : E(p, t) = (v1, ..., vn) ∧ E(t, p′) = (w1, ..., wn) ∧ v1 = w1.

– ∀ p ∈ t• ∃! p′ ∈ •t : E(p′, t) = (v1, ..., vn) ∧ E(t, p) = (w1, ..., wn) ∧ v1 = w1.

2. For every j ∈ {1, ..., k}, there exists one distinguished pair of places in P , a
source ij and a sink oj, where color(ij) = color(oj) = Cj with Cj ∈ Σ, and
there exists a path from ij to oj s.t. for each place p in the path color(p) = Cj.
We respectively denote the sets of sources and sinks in CP by P0 and PF .



3. ∀t ∈ T : ∀p, p′ ∈ •t p ̸= p′ ⇐⇒ color(p) ̸= color(p′) ∧ ∀p, p′ ∈ t• p ̸=
p′ ⇐⇒ color(p) ̸= color(p′), i.e., for every transition t, places located
within the set of input places of t have distinct colors. The same rule holds
for places located in the set of output places of t.

We close this section by defining execution semantics of our model. Let CP =
(P, T, F, color, E , Λ) be a CPN. A marking M is a function, mapping every place
p ∈ P to a (possibly empty) set of tokens M(p), s.t. M(p) ⊆ color(p). A binding
b of a transition t ∈ T is a function, that assigns a value b(v) to each variable
v occurring in arc expressions adjacent to t, where b(v) ∈ type(v). Transition t
is enabled in marking M w.r.t. a binding b iff ∀p ∈ •t : b(E(p, t)) ∈ M(p), that
is, each input place of t has at least one token to be consumed. The firing of an
enabled transition t in a marking M w.r.t. to a binding b yields a new marking
M ′ such that ∀p ∈ P : M ′(p) = M(p) \ {b(E(p, t))} ∪ {b(E(t, p))}.

3 Event Logs

Definition 3 (Event, Trace, Event Log). Let D be a finite set of data do-
mains, let Σ be a set of colors defined over D, and let A be a finite set of
activities. An event is a pair (a,R(e)) such that a ∈ A and ∀r ∈ R(e), r is a
tuple of color C ∈ Σ, representing an object involved in the execution of activity
a. A trace σ = ⟨e1, ..., em⟩ is a finite sequence of events, s.t. m = |σ| is the trace
length. An event log L is a multiset of traces.

Table 1: A trace σ of an event log, corresponding to a run in a trading system.
event (e) activity (a) objects (R(e))

e1 submit buy order (b1, 1, 22.0, 5)
e2 new buy order (b1, 1, 22.0, 5)
e3 submit sell order (s1, 2, 21.0, 2)
e4 new sell order (s1, 2, 21.0, 2)
e5 new sell order (s2, 3, 19.0, 1)
e6 trade2 (b1, 1, 22.0, 4), (s1, 2, 21.0, 0)

We denote as color(r) the color of object r ∈ R(e) in event e. For each object
r = (r(1), ..., r(n)) in an event e = (a,R(e)), its components r(1), ..., r(n) represent
the state of r after the execution of a. We assume that the first component of
r, r(1), is the object identifier which cannot be modified; id(r) = r(1) denotes
the identifier of r. We consider that objects in a trace can be distinguished.
R(σ) denotes the set of distinct object identifiers in a trace σ, e.g., for Table 1,
R(σ) = {b1, s1, s2}. Let r = (r(1), ..., r(n)) be an object. For j ∈ {1, ..., n}, we
consider that each attribute r(j) can be accessed using a name. Objects of the
same color share the same set of attribute names, e.g., for color OB described
in Section 2, we consider names {id, tsub, price, qty}; we fix a member access
function #, that given an object r = (r(1), ..., r(n)) and the name of the jth-
attribute, it returns r(j), i.e., #(r, namej) = r(j).



For simplicity, we use namej(r) instead of #(r, namej), e.g., for r = (b1, 1, 22.0, 5),
tsub(r) = 1, price(r) = 22.0, and qty(r) = 5.

Finally, a criterion of syntactical correctness must hold for CPNs and event logs
that serve as input to the method we propose. Let L be an event log, and let
CP = (P, T, F, color, E , Λ) be a conservative-workflow CPN. We say that L is
syntactically correct w.r.t. to CP iff, for every trace σ ∈ L, each event e in σ
is syntactically correct. An event e = (a,R(e)) is syntactically correct w.r.t. to
CP iff ∃t ∈ T : Λ(t) = a ∧ ∀p ∈ •t ∃!r ∈ R(e) : color(r) = color(p) ∧ ∀r ∈
R(e) ∃!p ∈ •t : color(r) = color(p); that is, for every event (a,R(e)), there
exists a transition t with activity label a, and each input place of t is mapped
to exactly one event’s object, and similarly each event’s object is mapped to
exactly one input place of t.

4 Conformance Method

We present a replay-based method to check conformance between a CPN and
a trace of an event log. For each event in a trace, the method seeks to execute
a model transition labeled with the event’s activity, and consuming tokens that
correspond to objects involved in the event. As mentioned in Section 1, four
kinds of deviations can be detected in events: control-flow deviations, priority
rule violations, resource corruptions, and non-proper termination of objects.

Algorithm 1 describes the replay method between a trace σ and a (conservative-
workflow) CPN whose initial marking is empty. In addition to deviations, the
method returns two counters: the number of token jumps j, i.e., the number of
tokens that are moved to input places of transitions to force their firing, and
the number of consumed/produced tokens k. At the start, each source place
of the CPN is populated with the trace’s distinct objects R(σ) according to
their color. For each object to insert as a token in a source place, we set its
values according to its first occurrence in σ. As an example, let us consider the
replay of trace σ in Table 1 on the CPN of Fig. 1: place p1 is populated with buy
orders (b1, 1, 22.0, 5), and p2 with sell orders (s1, 2, 21.0, 2) and (s2, 3, 19.0, 1).
Then, for each event e = (a,R(e)) in σ, a transition is selected to fire s.t.
Λ(t) = a. To fire t, we check for every object r ∈ R(e) whether its corresponding
token in the model (d1, ..., dn), id(r) = d1, is located in input place p of t s.t.
color(p) = color(r). If the latter is not true for an object r, we look for its
corresponding token in other places, which is moved to the input place p of t for
tokens of color(r). In such case, a control-flow deviation is registered and the
number of token jumps increases (e.g., Lines 5-10).
Let us consider again the replay of σ in Table 1 on the CPN of Fig. 1. Let us
assume that events e1,...,e4 were processed with no deviations detected. Now,
consider e5 = (new sell order, {(s2, 3, 19.0, 1)}) which implies to fire transi-
tion t4 consuming token with id. s2. In the current model marking, however, s2
is not in place p4, but in p2. To execute the model according to e5, token s2 jumps
to place p4 as depicted in Fig. 2. This deviation relates to a sell order that was
placed in the order book, but that illegally skipped activity submit sell order.



Algorithm 1: Object-Centric Replay with CPNs

Input: CP = (P, T, F, color, E , Λ) — conservative-workflow CPN;
P0, PF ⊆ P — non-empty sets of source and sink places;
σ — an event log trace;

Output: counter of token jumps (j) and consumed/produced tokens (k);
1 j← 0; k← 0;
2 populateSourcePlaces(P0, R(σ));
3 foreach e = (a,R(e)) in σ do
4 t← selectTransition(a); // ∃!t ∈ T Λ(t) = a
5 foreach r in R(e) do
6 if ¬∃(d1, ..., dn) ∈M(p) : p ∈ •t∧ color(p) = color(r)∧ id(r) = d1 then
7 registerDeviation(CONTROL FLOW);
8 jump(id(r), p);
9 j← j+ 1;

10 endif
11 if priorityRuleViolation((d1, ..., dn),M(p)) then
12 registerDeviation(RULE VIOLATION);
13 endif
14 endfor
15 fire(t, R(e));
16 k← k+ |R(e)|;
17 foreach r in R(e) do
18 let d = (d1, ..., dn) : d1 = id(r)∧ d ∈M(p)∧ color(p) = color(r)∧ p ∈ t•

19 if d ̸= r then
20 registerDeviation(RESOURCE CORRUPTED);
21 d← r;
22 endif
23 endfor
24 endfor
25 foreach r in R(σ) do
26 if ¬∃(d1, ..., dn) ∈M(p) : p ∈ PF ∧ color(p) = color(r) ∧ id(r) = d1 then
27 registerDeviation(NONPROPER TERMINATION);
28 jump(id(r), p);
29 j← j+ 1;
30 endif
31 endfor
32 consumeAllObjectsFromSinkPlaces(PF , R(σ));
33 k← k+ |R(σ)|;
34 return (j, k);
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e6=(trade2 ,{(b1 ,1 ,22.0 ,4) ,(s1 ,2 ,21.0 ,2)}) :  RULE-VIOLATION  and  RESOURCE-CORRUPTED 
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Fig. 3: Example of a priority rule violation and a resource corruption.

Prior to each transition firing, the method checks if each token to consume is
the one that must be selected according to a priority rule. To this end, we shall
assume that input CPNs may have priority rules on some transitions. Let b a
selected binding to fire a transition t. We define a priority rule on t as Φ(t) =∧

∀p∈•t ϕp(M(p), b(E(p, t))), s.t. b(E(p, t)) is the token to consume from input

place p, and ϕp(M(p), b(E(p, t))) is a priority local rule on p; ϕp(M(p), b(E(p, t)))
holds if b(E(p, t)) must be consumed before other tokens in M(p). Algorithm 1
checks the truth value ofΦ(t) by checking if the local rule of each input place p of
t is violated, i.e., in line 11, function priorityRuleViolation((d1, ..., dn),M(p))
evaluates to true iff Φ(t) is defined and ϕp(M(p), (d1, ..., dn)) does not hold. If
the function returns true, then a priority rule violation is registered as token
(d1, ..., dn) should not have been consumed before other tokens in p. For example,
let us assign Φ(t) = ϕBUY(M(p5), r1)∧ϕSELL(M(p6), r2) to transitions t5, t6, and
t7 (trade activities) in the CPN of Fig. 1, such that:

ϕBUY(M(p5), r1) = ∀(o,ts,pr,q)∈M(p5) id(r1 )̸=o : (price(r1) > pr)

∨ (price(r1) = pr ∧ tsub(r1) < ts)

ϕSELL(M(p6), r2) = ∀(o,ts,pr,q)∈M(p6) id(r2) ̸=o : (price(r2) < pr)

∨ (price(r2) = pr ∧ tsub(r2) < ts)

where r1 and r2 are buy and sell orders to consume; the local rule ϕBUY on place
p5 states that r1 must be the order with highest price (or with earliest submitted
time if other orders have the same price). The local rule ϕSELL on p6 is defined
similarly, but r2 must be the order with lowest price. Let us consider event e6
in Fig. 3: the rule on p6, to prioritize sell orders with lowest price, is violated as
order s1 with price 21.0 is consumed before s2 with price 19.0.

After firing a transition according to an event, we search for resource corruptions.
Specifically, we check if values of every transferred token are equal to the values
of corresponding objects in the event; this detects if a system transformed object
attributes as expected, e.g., in Fig. 3, after the trade of 1 stock between b1 and
s1, the stock quantity of b1 decreased from 5 to 3; however, event e6 shows that
the b1’s stocks changed to 4, indicating that b1 was corrupted; in case of these
deviations, values of the corrupted token are updated according to the values of
its corresponding object in the event, e.g., in Fig. 3, b1’s stocks change to 4.



After replaying a trace, we check non-proper termination, that is, whether the
system did not fully process all objects. We check if all objects reside in their
corresponding sinks. After the replay of the trace in Table 1 on the CPN of Fig.
1, orders b1 and s2 did not arrive to their sinks. These are orders that were not
fully handled by the trading system. For these deviations, the method moves
these tokens to their sinks, increasing the counter of token jumps j. When all
tokens are in the sinks, they are consumed by the environment, and the counter
of transfers k increases by the number of tokens consumed. Finally, the ratio
1− j/k can be used as a fitness metric to measure the extent to which a system
(as observed in the trace) complies with the CPN, e.g., if the result of such ratio
is 1, then all behavior observed in the trace complied with the model.

5 Prototype and Experiments

We implemented a software prototype1 of the method proposed using SNAKES
[15], a Python library for simulating CPNs. We aimed at detecting deviations
in the management of a subset of order books in a real-life trading system. We
validated order books with only day limit orders, orders that buy/sell stocks at
a fixed price, and that must trade or cancel by the end of a day. The orders
considered are not amended once they are submitted. The system expected be-
havior is described by the CPN of Fig. 1. The experimental setting is illustrated
in Fig. 4. The method takes as input the CPN of Fig. 1 and an event log where
each trace corresponds to the management of an order book during a day. The
log was extracted from a set of Financial Information Exchange (FIX) protocol
messages [8]. The messages were exchanged by users and the system during a
day, informing activities executed and status of orders. The recorded set consists
of 552935 FIX messages, whereas the log obtained from such set consists of 73
traces (order books) and 2259 events, with a mean of 30.94 events per trace.
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Fig. 4: Input/output of the conformance method for validating trading systems.

1 https://github.com/jcarrasquel/hse-uamc-conformance-checking



A fragment of the deviations file computed by the method is shown in Fig.
5. The file lists deviations detected in events of different traces of the input
log. Each line describes precise information of a deviation in the real system:
the trace (order book), event number, timestamp, and activity where the error
occurred, the object affected, and the kind of deviation detected. Also, a detailed
description of the deviation is automatically generated. In this experiment, most
of the deviations relate to corruption of orders when executing trades: the prices
of some orders changed upon the execution of trades, e.g., in event 1781 the
price of order with id. bSovX changed its price from 105 to 100 after trading,
and such transformation is not described in the CPN. Thus, this information
about deviations can be used by experts to confirm if this is a failure in the
system, or instead the model should be slightly refined.

deviations

Page 1

TRACE EVENT TIMESTAMP ACTIVITY OBJECT DEV. DEVIATION DESCRIPTION

1488058 1781 05:52:58.18 trade2 bSovX RC

1488058 1782 05:52:58.18 trade1 bSovX RC

1488061 1792 05:53:23.38 trade1 sSowK RV

1488061 1792 05:53:23.38 trade1 sSowK RC

1488061 1792 05:53:23.38 trade1 bSowJ RC
1488061 1793 05:53:23.38 trade2 bSowJ CF  resource with id: b00d0PhqYSowJ was not in location p5 but in p7

1488061 1793 05:53:23.38 trade2 bSowJ RC

1488061 1793 05:53:23.38 trade2 sSowL RC
1488061 end - - bSowJ NT  resource with id: b00d0PhqYSowJ was not in final location p7 but in  p5

1488062 1803 05:53:31.38 trade2 bSowN RC

1488062 1804 05:53:31.38 trade1 bSowN RC
9088012 end - - bmkq9 NT  resource with id: b00d0PiS3mkq9 was not in final location p7 but in p5
9088012 end - - smkqA NT  resource with id: s00d0PiS3mkqA was not in final location p8 but in p6
9088015 end - - sSSZd NT  resource with id: s00d0Pi88SSZd was not in final location p8 but in p6

 resource has event-state: ('b00d0PhqYSovX'  1550491266  100.0  100)
,but model-state is: ('b00d0PhqYSovX'  1550491266  105.0  100)
 resource has event-state: ('b00d0PhqYSovX'  1550491266  101.0  0)
,but model-state is: ('b00d0PhqYSovX'  1550491266  100.0  0)
 resource with id: s00d0PhqYSowK did not have priority
,over other resources in the same place.
 resource has event-state: ('s00d0PhqYSowK'  1550490938  101.0  0)
,but model-state is: ('s00d0PhqYSowK'  1550490938  101.0  -100)
 resource has event-state: ('b00d0PhqYSowJ'  1550490919  101.0  0)
,but model-state is: ('b00d0PhqYSowJ'  1550490919  105.0  100)

 resource has event-state: ('b00d0PhqYSowJ'  1550490919  105.0  100)
,but model-state is: ('b00d0PhqYSowJ'  1550490919  101.0  -100)
 resource has event-state: ('s00d0PhqYSowL'  1550490947  105.0  0)
,but model-state is: ('s00d0PhqYSowL'  1550490947  100.0  0)

 resource has event-state: ('b00d0PhqYSowN'  1550490899  100.0  100)
,but model-state is: ('b00d0PhqYSowN'  1550490899  105.0  100)
 resource has event-state: ('b00d0PhqYSowN'  1550490899  101.0  0)
,but model-state is: ('b00d0PhqYSowN'  1550490899  100.0  0)

Fig. 5: Fragment of deviations detected (DEV): resource corruptions (RC), priority
rule violations (RV), control-flow deviations (CF), non-proper termination (NT)

.

In a second experiment, we show how information obtained during replay, about
token jumps and transfers, can be used to enhance an input CPN for visual-
izing deviations. Using SNAKES, we built a model representing a trading sys-
tem, similar to the CPN of Fig. 1, but with some undesired behavior that shall
be uncovered as control-flow deviations: orders may skip activities submit buy

order and submit sell order, e.g., this may represent malicious users submit-
ting unverified orders via back-doors. Also, activity new sell order may lead
some orders to a deadlock. As input for our method, we consider the model of
Fig. 1 and an artificial event log, that records the system’s behavior. The log was
generated by our solution, running the CPN that represents the faulty system.



The log consists of 100 traces and 4497 events, with an average of 44.97 events
per trace. In each trace, there is an average of 10 buy orders and 10 sell orders.
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Fig. 6: Specification model extended with diagnostics computed by our method.

Upon the execution of the method, control-flow deviations are detected and
reveal the undesired behavior previously described. When detecting such de-
viations, tokens jump between places via unforeseen model paths in order to
continue the replay. Information about token jumps in each place of the CPN,
as well as token transfers are registered by our solution. Fig. 6 illustrates how
such information is used to enhance the input CPN model. Dotted lines rep-
resent token jumps related to the deviations mentioned: jumps from p1 to p3,
and from p2 to p4 are from orders that illegally skipped activities submit buy

order and submit sell order. Also, jumps from p6 to p8 relate to orders that
got locked after executing new sell order. The method detects such locked or-
ders when checking non-proper termination. Input arcs and dotted lines indicate
the (rounded) average number of transferred/jumped tokens, considering all log
traces. The software prototype tracks the proportion of token transfers/jumps
flowing through model components. Local conformance metrics are computed
using such proportions to measure how deviations affect precise system parts.
For example, new buy order has a measure of 0.5, meaning that 5 out of 10
objects processed by the activity complied with the model path. We refer to [6]
for formal definitions and a further discussion about these local measures.



6 Conclusions

In this paper, we presented a conformance method to search for deviations in
trading systems. Different deviations are detected by replaying a system’s trace
on a CPN. We validated the management of orders in a real system and revealed
precise deviations. Another experiment showed how conformance diagnostics can
be added to a CPN to display control-flow deviations. A direction for further
research may study how to visualize more complex deviation patterns.
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